Abstract
Olivine silicates LiMSiO4 (where M = Mn, Fe, Co, and Ni) are promising candidates for the next generation of cathode materials for use in lithium ion batteries (LIB). Among these compounds, LiFeSiO4 is an attractive choice due to its low cost, environmental friendliness, high safety, and stability. In this work, we use first-principles density functional theory-based calculations to determine the structural and electrochemical properties of olivine-type LiFeSiO4 and LiFe0.5M0.5SiO4 (where M = Mg or Al). Because of the influence of stronger Si–O bonds in weakening Fe–O bonds via an inductive effect, we find that these compounds have a high lithium intercalation voltage (i.e., ∼ 5 V) and undergo negligible changes in volume during lithiation and delithiation. Using the Bader scheme for topological partitioning of charge density and projected density of states (PDOS) in the electronic strucutre, we highlight the significant role of O-2p states and the relatively inert role of Fe-3d states in the charge trans...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.