Abstract

Transition metal complexes provide a promising avenue for the design of therapeutic and diagnostic agents, but the limited understanding of their cellular uptake is a roadblock to their effective application. Here, we examine the mechanism of cellular entry of a luminescent ruthenium(II) polypyridyl complex, Ru(DIP) 2dppz (2+) (where DIP = 4,7-diphenyl-1,10-phenanthroline and dppz = dipyridophenazine), into HeLa cells, with the extent of uptake measured by flow cytometry. No diminution of cellular uptake is observed under metabolic inhibition with deoxyglucose and oligomycin, indicating an energy-independent mode of entry. The presence of organic cation transporter inhibitors also does not significantly alter uptake. However, the cellular internalization of Ru(DIP) 2dppz (2+) is sensitive to the membrane potential. Uptake decreases when cells are depolarized with high potassium buffer and increases when cells are hyperpolarized with valinomycin. These results support passive diffusion of Ru(DIP) 2dppz (2+) into the cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.