Abstract

Brain injury represents a leading cause of deaths following cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). This study explores the role of CREB1 (cAMP responsive element binding protein 1)/DAPK1 (death associated protein kinase 1) axis in brain injury after CPR. CA was induced by asphyxia in rats, followed by CPR. After CREB1 over-expression, the survival rate and neurological function score of rats were measured. Nissl and TUNEL staining evaluated the pathological condition of hippocampus and apoptosis of hippocampal neurons respectively. H19-7 cells were subjected to OGD/R and infected with oe-CREB1. CCK-8 assay and flow cytometry measured the cell viability and apoptosis. CREB1, DAPK1, and cleaved Caspase-3 expressions were examined using Western blot. The binding between CREB1 and DAPK1 was determined using ChIP and dual-luciferase reporter assays. CREB1 was poorly expressed while DAPK1 was highly expressed in rat hippocampus after CPR. CREB1 overexpression improved rat neurological function, repressed neuron apoptosis, and reduced cleaved Caspase-3 expression. CREB1 was enriched on the DAPK1 promoter and suppressed DAPK1 expression. DAPK1 overexpression reversed the inhibition of OGD/R-insulted apoptosis by CREB1 overexpression. To conclude, CREB1 suppresses hippocampal neuron apoptosis and mitigates brain injury after CPR by inhibiting DAPK1 expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.