Abstract

A phenomenological model of room temperature photoconductivity in nanocrystalline SnO2 under photon excitation below the fundamental bandgap based on electronic states located at the bottom part of the band gap was proposed. Nature of these states is related to the surface oxygen vacancies and Sn-derived electronic states. Appropriate distribution of these states was considered. Numerical simulation of the photoconductivity response and decay on the basis of balance rate equation for excited electrons and immobile holes was done. Analysis revealed that response time is determined by the photoionization cross section of these states and intensity of illumination. Stationary photoresponse is saturated due to the limited number of these states. Intergrain potential barrier that originated due to the ionosorbed oxygen is the main factor limiting the reverse annihilation process and determining the photoconductivity decay time. Stretched exponential behavior of the photoconductivity decay was interpreted in terms of structural and electronic film disordering that results in asymmetric probability distribution of intergrain barrier heights and corresponding distribution of time constants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.