Abstract
Electrochemical persulfate activation (E-PS) has recently emerged as a highly effective advanced oxidation process in water decontamination. However, the presence of chloride ions (Cl−) in waters can accelerate anodic corrosion as well as lead to the formation of toxic chlorinated byproducts (i.e., ClO4−), limiting its practical application. In this study, we introduce a novel Nd/Bi@SnO2 anode to construct E-PS, which exhibits high stability in chloride-containing water with a long-expected service lifetime of 13.7 years. The Nd/Bi@SnO2 electrode can effectively convert Cl− to reactive chlorine with the assistance of PMS, triggering singlet oxygen (1O2) generation for superior organic removal while avoiding toxic chlorinated byproducts (i.e., ClO4−) generation as well as greatly reducing the energy consumption. Comprehensive structural and electrochemical characterization results demonstrate Nd/Bi co-doping introduces oxygen vacancy on Nd/Bi@SnO2, enabling the anode with high oxygen evolution potential, excellent conductivity and superior stability. Scavenging experiments and electron paramagnetic resonance illustrate the generation of various reactive species in the system, among which 1O2 predominantly contributes to organic removal and results in harmless intermediates. This innovative approach transforms Cl− into ROSs for eco-friendly, energy-efficient water decontamination.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have