Abstract

Lithium bis(fluorosulfonyl)imide (LiFSI) is a promising replacement for lithium hexafluorosphate due to its excellent properties. A solution to the corrosion of aluminum (Al) current collectors by LiFSI at elevated temperatures is essential. The mechanisms of Al corrosion in LiFSI-based electrolyte at 45 °C were studied with density functional theory calculations and spectroscopic investigations. It is found that the irregular, loose and unprotected AlF3 materials caused by the dissolution of co-generated Al(FSI)3 can exacerbate Al corrosion with the increase of temperature. Lithium bis(oxalate)borate (LiBOB) can effectively inhibit the Al corrosion with a robust and protective interphase; this can be attributed to the interfacial interactions between the Al foil and electrolyte. Boron-containing compounds promote the change from AlF3 to LiF, which further reinforces interfacial stability. This work allows the design of an interface to Al foil using LiFSI salt in lithium-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call