Abstract

AbstractA kinetic study of the propagation mechanism of the alternating copolymerization of styrene (St) with methyl methacrylate (MMA) in the presence of a complexing agent (diethylaluminum chloride, DEAC) in bulk and in tetrachloroethylene solutions at a molar ratio DEAC/MMA = 0.5 has been carried out. It has been shown that the copolymerization is a chain radical process characterized by a short active‐center lifetime, bimolecular termination, and high rate of chain transfer to the complexed MMA. A kinetic scheme has been proposed for the propagation mechanism of alternating copolymerization in the presence of a complexing agent not requiring independent measurements of the equilibrium constant of complexation. It has been found that spontaneous and UV‐initiated copolymerizations in the system have different mechanisms of initiation and a common mechanism of propagation. The propagation proceeds by addition of single monomers as well as donor‐acceptor complexes of the comonomers to the propagation radicals, with the first mechanism being predominant. Inclusion of the monomers in the complex leads to an increase of the St reactivity and to a decrease of the MMA reactivity in propagation to the corresponding macroradicals in comparison with the reactivity of the free monomers. A number of kinetic and statistical parameters of the propagation reaction have been calculated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.