Abstract

Hot corrosion behavior in sulfate salt at 950 °C of Rene N5 single-crystal superalloys with 3 wt% rhenium (NSR) was investigated compared with that of nickel-based single-crystal superalloys without rhenium (NS). After 30-h corrosion, the surface of the NS superalloy is seriously corroded. Many holes and exfoliation appear on the surface. The NSR superalloys exhibit better hot corrosion resistance than the NS superalloys. After 30-h corrosion, a continuous and compact Al2O3 film is observed on its surface. The Al2O3 film with dense structure formed on the surface provides protection for the matrix. The characterization results show that Al is aggregated in the γ′ phase, while Re is aggregated in the γ phase during the formation of oxide scale. Considering that Re can inhibit the diffusion of Al in the nickel matrix, it is inferred that Re can inhibit the outward diffusion of Al and prevent the decrease of Al concentration in the γ′ phase. High concentration of Al hinders the decomposition of Al2O3 due to the reaction of acid and basic dissolution. Al2O3 keeps its structure intact and provides protection for the matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.