Abstract

The Caenorhabditis elegans let-60 gene encodes a Ras protein that mediates induction of the hermaphrodite vulva. To better understand how mutations constitutively activate Ras and cause unregulated cell division, we have characterized ga89, a temperature-sensitive, gain-of-function mutation in let-60 ras. At 25 degrees, ga89 increases let-60 activity resulting in a multivulva phenotype. At 15 degrees, ga89 decreases let-60 activity resulting in a vulvaless phenotype in let-60(ga89)/Df animals. The ga89 mutation causes a leucine (L) to phenylalanine (F) substitution at amino acid 19, a residue conserved in all Ras proteins. We introduced the L19F change into human H-Ras protein and found that the in vitro GTPase activity of H-Ras became temperature-dependent. Genetic experiments suggest that LET-60 (L19F) interacts with GAP and GNEF, since mutations that decrease GAP and GNEF activity affect the multivulva phenotype of let-60(ga89) animals. These results suggest that the L19F mutation primarily affects the intrinsic rate of GTP hydrolysis by Ras, and that this effect may be sufficient to account for the activated-Ras phenotype caused by let-60(ga89). Our results suggest that a mutation in a human ras gene analogous to ga89 might contribute to oncogenic transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call