Abstract

Activating mutations in the genes encoding the ATP-sensitive potassium (K(ATP)) channel subunits Kir6.2 and SUR1 are a common cause of neonatal diabetes. Here, we analyse the molecular mechanism of action of the heterozygous mutation F132L, which lies in the first set of transmembrane helices (TMD0) of SUR1. This mutation causes severe developmental delay, epilepsy and permanent neonatal diabetes (DEND syndrome). We show that the F132L mutation reduces the ATP sensitivity of K(ATP) channels indirectly, by altering the intrinsic gating of the channel. Thus, the open probability is markedly increased when Kir6.2 is co-expressed with mutant TMD0 alone or with mutant SUR1. The F132L mutation disrupts the physical interaction between Kir6.2 and TMD0, but does not alter the plasmalemma channel density. Our results explain how a mutation in an accessory subunit can produce enhanced activity of the K(ATP) channel pore (formed by Kir6.2). They also provide further evidence that interactions between TMD0 of SUR1 and Kir6.2 are critical for K(ATP) channel gating and identify a residue crucial for this interaction at both physical and functional levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.