Abstract

Fe-implanted Si-wafers have been oxidized at 900 °C and 1100 °C in order to investigate the behaviour of Fe atoms at the growing SiO2/Si interface and the impact on the integrity of microelectronic devices of an involuntary Fe contamination before or during the oxidation process. As-implanted and oxidized wafers have been characterized using secondary ion mass spectroscopy, atom probe tomography, and high-resolution transmission electron microscopy. Experimental results were compared to calculated implantation profiles and simulated images. Successive steps of iron disilicide precipitation and oxidation were evidenced during the silicon oxidation process. The formation of characteristic pyramidal-shaped defects, at the SiO2/Si interface, was notably found to correlate with the presence of β-FeSi2 precipitates. Taking into account the competitive oxidation of these precipitates and of the surrounding silicon matrix, dynamic mechanisms are proposed to model the observed microstructural evolution of the SiO2/Si interface, during the growth of the silicon oxide layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.