Abstract

First-principles molecular dynamics simulations are used to examine the effect of C addition in Na-flux growth of GaN. The mechanism for suppression of polycrystalline growth and the enhancement of single-crystal growth was identified by systematically calculating activation free energies for the formation and dissociation of C–N bonds. The energy barrier for C–N dissociation in a Ga–Na melt is ≥3 eV; thus, dissociation is inhibited and the growth of polycrystals is suppressed. However, at kink sites at a Na/GaN interface with excess Ga atoms, the barrier is only ∼1.0 eV, allowing C–N dissociation and growth of GaN single crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.