Abstract

Molecular modeling and dynamics simulations have been performed to study how cocaine inhibits dopamine transporter (DAT) for the transport of dopamine. The computationally determined DAT-ligand binding mode is totally different from the previously proposed overlap binding mode in which cocaine- and dopamine-binding sites are the same (Beuming, T.; et al. Nat. Neurosci. 2008, 11, 780-789). The new cocaine-binding site does not overlap with, but is close to, the dopamine-binding site. Analysis of all results reveals that when cocaine binds to DAT, the initial binding site is likely the one modeled in this study because this binding site can naturally accommodate cocaine. Then cocaine may move to the dopamine-binding site after DAT makes some necessary conformational change and expands the binding site cavity. It has been demonstrated that cocaine may inhibit the transport of dopamine through both blocking the initial DAT-dopamine binding and reducing the kinetic turnover of the transporter following the DAT-dopamine binding. The relative contributions to the phenomenological inhibition of the transport of dopamine from blocking the initial binding and reducing the kinetic turnover can be different in different types of assays. The obtained general structural and mechanistic insights are consistent with available experimental data and could be valuable for guiding future studies toward understanding cocaine's inhibiting of other transporters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.