Abstract
In chromatin, 5-methylcytosine (mC), which represents the fifth nucleobase in genomic DNA, plays a role as an inducer of epigenetic changes. Tumor cells exhibit aberrant DNA methylation patterns, and inhibition of human DNA cytosine-5 methyltransferase (DNMT), which is responsible for generating mC in CpG sequences, is an effective strategy to treat various cancers. Here, we describe the design, synthesis, and evaluation of the properties of 2-amino-4-halopyridine-C-nucleosides (dX P) and oligodeoxyribonucleotides (ODNs) containing dX P as a novel mechanism-based inhibitor of DNMTs. The designed ODN containing X PpG forms a complex with DNMTs by covalent bonding through a nucleophilic aromatic substitution (SN Ar) reaction, and its cell proliferation activity is investigated. This study suggests that dX P in a CpG sequence of DNA could serve as a potential nucleic acid drug lead in cancer chemotherapy and a useful chemical probe for studies of epigenetics. Our molecular design using a SN Ar reaction would be useful for DNMTs and other protein-DNA interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chembiochem : a European journal of chemical biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.