Abstract

DNA cytosine 5-methyltransferase (DNMT) catalyzes methylation at the C5 position of the cytosine residues in the CpG sequence. Aberrant DNA methylation patterns are found in cancer cells. Therefore, inhibition of human DNMT is an effective strategy for treating various cancers. The inhibitors of DNMT have an electron-deficient nucleobase because this group facilitates attack by the catalytic Cys residue in DNMTs. Recently, we reported the synthesis and properties of mechanism-based modified nucleosides, 2-amino-4-halopyridine-C-nucleosides (dX P), as inhibitors of DNMT. To develop a more efficient inhibitor of DNMT for oligonucleotide therapeutics, oligodeoxyribonucleotides (ODNs) containing other nucleoside analogues, which react more quickly with DNMT, are needed. Herein, we describe the design, synthesis, and evaluation of the properties of 2-amino-3-cyano-4-halopyridine-C-nucleosides (dX PCN ) and ODNs containing dX PCN , as more reactive inhibitors of DNMTs. Nucleophilic aromatic substitution (SN Ar) of the designed nucleosides, dX PCN , was faster than that of dX P, and the ODN containing dX PCN effectively formed a complex with DNMTs. This study suggests that the incorporation of an electron-withdrawing group would be an effective method to increase reactivity toward the nucleophile of the DNMTs, while maintaining high specificity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.