Abstract

Nafion series cation exchange membranes are extensively investigated and applied in proton exchange membrane fuel cells and flow battery technologies because of their excellent stability and easy availability. However, a deep understanding of their ions transport mechanism and behavior under the alkaline based flow battery media is very limited. Here, the ion transport mechanism through Nafion membrane under alkaline medium is investigated by small-angle X-ray scattering and atomic force microscope techniques. The results indicate that a membrane showed a higher degree of phase separation and larger cluster radius in a NaOH solution than those in a KOH solution, which endows the membrane with a much higher ion conductivity in the NaOH solution. Density functional theory-based simulation also indicates that the adsorption and desorption between the Na+ and the –SO3- in Nafion is faster than those of K+. Inspired by these results, an alkaline zinc iron flow battery with a Nafion 212 membrane using NaOH as the supporting electrolyte exhibits a coulombic efficiency of ~ 99% and an energy efficiency of ~ 86% at 80 mA cm−2. This work offers insights into ways to obtain an improved battery performance for the existing as well as the emerging alkaline based flow battery technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.