Abstract

Solar radiation in plateau permafrost regions is strong. The asphalt pavement strongly absorbs and slowly dissipates heat, leading to significant heat accumulation on the pavement. This accumulation disturbs the underlying permafrost and eventually causes serious pavement damage. To improve the heat resistance and dissipation capabilities of asphalt pavement, a nanofluid directional heat conduction structure (N-DHCS) was suggested and analyzed in this paper. The designed structure can resist heat in the daytime due to the low thermal conductivity of liquid and dissipates heat at night through natural convection. The finite element method and laboratory irradiation experiment were employed to performed thermal analyses of N-DHCS. The results demonstrated that establishing the N-DHCS in asphalt pavements can enhance active heat dissipation capacity, which is beneficial for protecting the frozen soil in plateau permafrost regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.