Abstract
Compact and planar optical beam splitters are highly desirable in various optical and photonic applications. Here, we investigate two kinds of optical beam splitters by using oligomer-based metasurfaces, one is trimer-based metasurface for 3-dB beam splitting, and the other is pentamer-based metasurface for 1:4 beam splitting. Through electromagnetic multipole decomposition and in-depth mechanism analyses, we reveal that the electromagnetic multipolar interactions and the strong near-field coupling between neighboring nanoparticles play critical roles in beam-splitting performance. Our work offers a deeper understanding of electromagnetic coupling effect in oligomer-based metasurfaces, and provides an alternative approach to planar beam splitters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.