Abstract
SUMMARYSynaptotagmin-I (syt) is a Ca2+ sensor that triggers synchronous neurotransmitter release. The first documented biochemical property of syt was its ability to aggregate membranes in response to Ca2+. However, the mechanism and function of syt-mediated membrane aggregation are poorly understood. Here, we demonstrate that syt-mediated vesicle aggregation is driven by trans interactions between syt molecules bound to different membranes. We observed a strong correlation between the ability of Ca2+-syt to aggregate vesicles and to stimulate SNARE-mediated membrane fusion. Moreover, artificial aggregation of membranes - using non-syt proteins - also efficiently promoted fusion of SNARE-bearing liposomes. Finally, using a modified fusion assay, we observed that syt drives the assembly of otherwise non-fusogenic individual t-SNARE proteins into fusion competent heterodimers, in an aggregation-independent manner. Thus, membrane aggregation and t-SNARE assembly appear to be two key aspects of Ca2+-syt-regulated, SNARE-catalyzed fusion reactions.
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have