Abstract

The Qi four-wing chaotic system is transformed into a Kolmogorov-type system, thereby building a bridge between a numerical chaotic system and a physical chaotic system that is convenient for analysis when finding common ground between the two. The vector field is decomposed into four types of torques: inertial, internal, dissipative and external. The angular momentum representing the physical analogue of the state variables of the chaotic system is identified. The cycling of energy among potential energy, kinetic energy, dissipation, and external energy is analyzed. The Casimir function is employed to identify the key factors producing chaos and other dynamical modes. The system is non-Rayleigh dissipative, which determines the extremal points of Casimir function to form a hyperboloid instead of ellipsoid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call