Abstract

The mechanism of atrazine degradation in aqueous phase was investigated under sonolysis at 20kHz, ozonation, photolysis at 254nm and photocatalysis in the presence of TiO2, employed either separately or in combination. Ozonation and photocatalysis induced atrazine de-alkylation, followed by slower de-chlorination, while direct photolysis at 254nm produced very efficient de-chlorination. Simultaneous sonolysis had beneficial effects on ozonation and photocatalysis, especially by increasing the rate of photocatalytic de-alkylation, and no effect on the unimolecular photolytic de-chlorination of atrazine. Although complete atrazine mineralization could not be attained, because of the stability of the s-triazine ring toward oxidation, atrazine degradation and overall detoxification, as related to the disappearance of chlorinated by-products, proceeded at the highest rate when photolysis at 254nm was combined with ozonation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.