Abstract

Traditional photoelectric catalysis technologies are limited by the needs for large external energy input. In this study, the self-powered photoelectric catalysis was established by a spherical triboelectric nanogenerator (S-TENG) under a pulsed direct-current electric field to improve the removal rate of Atrazine (ATZ). Also, the electrical output performance of S-TENG was tested. To further improve the utilization of light and degradation efficiency of ATZ, the photoelectrode (TiO2 nanotube) and photocatalyst (6HF-TiO2 nanosheets) were both used to degrade ATZ. The removal rate of ATZ was enhanced by 8.53%, and the mineralization was increased by 27.2% within 30 min in the photoelectric catalysis system with pulse direct-current electric field by S-TENG. The degradation mechanism of ATZ was also demonstrated by the EPR tests and free radicals quenching experiments. The result showed that the photogenerated free radicals were increased by triboelectric pulsed direct-current during the photoelectric catalysis degradation. The hydroxyl radical (•OH) played an essential role in the degradation of ATZ in the self-powered photoelectric catalysis system. In addition, the degradation pathway of ATZ was proposed in detail based on LC-MS/MS test and density functional theory (DFT) calculation. Furthermore, the toxicity of ATZ and its degradation intermediates were evaluated by the ECOSAR program. Overall, this research provides a novel strategy for enhancing the performance of self-powered photoelectric catalysis processes for wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.