Abstract

The drain-current enhancement of the mechanically strained strained-Si NMOSFET device is investigated for the first time. The improvements of the drain current are found to be /spl sim/3.4% and /spl sim/6.5% for the strained-Si and control Si devices, respectively, with the channel length of 25 μm at the external biaxial tensile strain of 0.037%, while the drain-current enhancements are /spl sim/2.0% and /spl sim/4.5% for strained-Si and control Si devices, respectively, with the channel length of 0.6 μm. Beside the strain caused by lattice mismatch, the mechanical strain can further enhance the current drive of the strained-Si NMOSFET. The strain distribution due to the mechanical stress has different effect on the current enhancement depending on the strain magnitude and channel direction. The smaller current enhancement for strained-Si device as compared to the control device can be explained by the saturation of mobility enhancement at large strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.