Abstract

Isolated outer hair cells from the organ of Corti of the guinea pig have been shown to change length in response to a mechanical stimulus in the form of a tone burst at a fixed frequency of 200 Hz (Canlon et al., 1988). In the present study, the threshold of movement for individual outer hair cells is related to the original length of the cell such that long cells are more sensitive than short cells for all cochlear locations studied. Length changes could be elicited when the stimulus was projected at any site along the longitudinal axis of the plasma membrane. Length changes were not elicited when the stereocilia were stimulated directly. These mechanically-induced length changes were found to be metabolically dependent. In the presence of either sodium cyanide or 2,4-dinitrophenol, the motile response of outer hair cells was completely blocked within 30 min. When the extracellular pH was altered in a graded fashion, the motile response decreased gradually. Furthermore, 3 μM poly- l-lysine or poly- d-lysine of different molecular weights were also effective in blocking the motile response, whereas the negatively charged polyaminoacid, poly- l-aspar-tate, was not effective. Fluorescently-Iabelled poly-lysine demonstrated that the plasma membrane, stereocilia, and nucleus were the most intensely stained structures of the outer hair cells. It is suggested that the passive influx of poly-lysine is responsible for the inhibition of the motile response. Finally, the finding that the bidirectional motile response of isolated outer hair cells induced by mechanical stimulation is dependent on the metabolic state of the cell distinguishes this type of motility from the electrically induced outer hair cell shape changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.