Abstract
Transparent conducting oxides (TCOs) are essential components of optoelectronic devices and various materials have been explored for highly efficient TCOs having a combination of high transmittance and low sheet resistance. Here, we focus on a misfit thermoelectric oxide [Ca2CoO3]0.62[CoO2] and fabricate the transparent low-layered crystals by a mechanical tape-peeling method using the single-crystalline samples. From the transmittance measurement, we find that the thickness of low-layered samples is several orders of hundred nanometers, which is comparable with the estimation from the scanning electron microscopy images. Compared to the previous results on the polycrystalline and c-axis oriented transparent films, the electrical resistivity is reduced owing to the single-crystalline nature. The figure of merit for the transparent conducting materials in the present low-layered samples is then evaluated to be higher than the values in the previous reports. The present results on the low-layered single-crystalline [Ca2CoO3]0.62[CoO2] may offer a unique class of multi-functional transparent thermoelectric oxides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.