Abstract

Mechanical work, mechanical power, energy consumption and mechanical efficiency were studied in constant-speed treadmill running of 5 min at seven different exercises around aerobic (AerT) and anaerobic (AnT) thresholds. The true efficiency of concentric (positive) mechanical work and gross efficiency of the whole body in seven male subjects were calculated. The total mechanical work was calculated from film through the translational, potential and rotational energy states as the sum of the changes of all the mechanical energy states in all body segments allowing energy transfer between segments and from energy state to state. The total energy consumption was measured by combining aerobic and anaerobic energy production in resting and working conditions. When the speed of the treadmill was increased from the velocity of 10 km h-1 (2.8 m s-1) to 22 km h-1 (6.1 m s-1), the concentric mechanical work per one step increased from 129 +/- 45 J to 228 +/- 82 J (P less than 0.01). Oxygen consumption increased from 2.22 +/- 0.27 1 min-1 to 4.47 +/- 0.24 1 min-1. The amount of blood lactate increased from 0.94 +/- 0.53 mmol l-1 at the lowest speed to 9.90 +/- 2.89 mmol l-1 at the highest speed (P less than 0.001). The true efficiency of concentric work decreased from 74 +/- 14% to 56 +/- 8% (P less than 0.05). At the speed of the AerT, the economy of running, the vertical rise of different body segments and mechanical efficiency of positive work were high. The highest gross efficiency was found at the running speed between the AerT and AnT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call