Abstract

Mechanical ventilation is an essential but potentially harmful therapeutic intervention for patients with acute lung injury. The objective of this study was to investigate the effects of mechanical ventilation on large-aggregate surfactant (LA) structure and function. Isolated rat lungs were randomized to either a nonventilated control group, a relatively noninjuriously ventilated group [1 h, 10 ml/kg tidal volume, 3 cmH(2)O positive end-expiratory pressure (PEEP)], or an injuriously ventilated group (1 h, 20 ml/kg tidal volume, 0 cmH(2)O PEEP). Injurious ventilation resulted in significantly decreased lung compliance compared with the other two groups. LA structure, as determined by electron microscopy, revealed that LA from the injurious group had significantly lower amounts of organized lipid-protein structures compared with LA obtained from the other groups. Analysis of the biophysical properties by using a captive bubble surfactometer demonstrated that adsorption and surface tension reduction were significantly impaired with LA from the injuriously ventilated lungs. We conclude that the injurious mechanical ventilation impairs LA function and that this impairment is associated with significant morphological alterations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call