Abstract
The current study aims to explore the tensile fracture mechanism and thermo-mechanical efficiency of polyamide-6 (PA6) reinforced with titanium dioxide (TiO2) and multiwalled carbon nanotubes (MWCNTs). The uniform dispersion of the MWCNTs and appreciable interfacing between PA6, TiO2, and MWCNTs were revealed in the fractography figures. The crystallization temperature and degree of crystallinity have been enhanced by the addition of nanoparticles to the PA6 matrix. Young’s modulus, tensile strength, and Charpy impact strength improved proportionally concerning reinforcement content. The essential work of fracture (EWF) method was applied to evaluate the toughening and fracture behavior of PA6 hybrid systems. Considerable improvement (+60.6%) in the EWF of PA6–TiO2–MWCNT nanocomposites was observed at 4 wt.% CNT and 2 wt.% TiO2. Limiting oxygen index (LOI) findings demonstrate that a polymer with a combination containing titanium dioxide and multiwalled carbon nanotubes has a highly substantial retardant influence. As a result, the TiO2–CNT combination acts as a synergist filler, offering versatile PA6 composite products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.