Abstract

Cured-in-place-pipe (CIPP) liners have been widely used in rehabilitation of gravity flow pipelines. However, the host pipe rehabilitated by the CIPP liner may be subject to shear force and shear displacement at the joint. In this study, a finite element model of a rigid host pipe with liner under shear action is established and used to study the resulting behaviour. Controlling factors such as the gap spanned by the liner between host pipes across the joint, diameter, the liner thickness, the elastic modulus of the liner, and the coefficient of friction between host pipe and liner are studied. The liner stress, displacement, and shear force are reported. Shear stiffness and stress equations are then fitted based on 286 data points. The results show that the maximum stress on the inner surface of the liner occurs at the shoulder and haunch, and the maximum stress on the outer surface occurs at the springline. The inner surface stresses at the crown and invert decrease with increases in liner-host pipe friction, but increase at the shoulder and haunch. Coefficient of Friction has almost no effect on the stresses that develop on the outside surface of the liner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.