Abstract

In this paper, a novel mechanical structure for a gamma-ray monitor (GRM) is designed for a small satellite payload. Its structural stiffness, strength and dynamic response are directly related to the performance of the novel GRM, which must meet the static and dynamic characteristic requirements of the structure in a harsh vibration environment. The static and dynamic simulation of the structure are carried out by finite element method (FEM), and the mechanical structure response laws of the novel GRM are analyzed and validated by vibration tests. Through comparing the frequency response simulation results with the vibration test results, the minimum safety factor of the key components of the structure is 4.07, the fundamental frequency error is within 5.04%, the acceleration response error is within 8.5%, the root mean square of total acceleration (Grms) error is within 14.2%, and the sinusoidal characteristic sweep frequency error before and after the vibration test is within 5.0%. The results show that the payload structure has large structural stiffness, high strength and reasonable frequency response characteristics, and meets the design requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.