Abstract

Wound healing and function recovery of injured tendons is still a big challenge for orthopaedic surgery. Evidence in clinic shows that early controlled motion has significant favorable effects on tendon healing, however, the mechanisms involved in are not fully understood. In the present study, it was shown that an appropriate mechanical stretch (10% strain, 0.5 Hz for 1 h) evidently promotes rat tenocyte migration and nuclear morphology changes. The farther research discovered that mechanical stretch had no effect on Lamin A/C expression, but it could promote chromatin decondensation. Moreover, the histone modification plays an important role in mechanical stretch-mediated chromatin decondensation. Inhibition histone modification could inhibit mechanical stretch-promoted nuclear morphology changes and tenocyte migration. These results indicating that mechanical stretch may promote tenocyte migration via chromatin remodeling-mediated nuclear morphology changes, which contribute to a better understanding of the role of mechanical stretch on tenocyte migration and repair of injured tendon. This article is protected by copyright. All rights reserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.