Abstract
Aims Although heme oxygenase-1 (HO-1) is involved in osteoblastic differentiation, the HO-1- and odontoblastic differentiation-inducing effects of mechanical stress (MS) have not been clarified in human dental pulp cells (HDPCs). In this study, we examined the effects of MS on the odontoblastic differentiation of immortalized HDPCs and on the primary intracellular signaling pathways, including the HO-1 pathway, implicated in this differentiation. Main methods A Flexercell strain unit was used to generate cyclic tensile strain in HDPCs. Expressions of mRNAs encoding HO-1 and HDPC differentiation markers, such as osteopontin (OPN), bone sialoprotein (BSP), dentin sialophosphoprotein (DSPP), and dentin matrix-protein-1 (DMP-1), were evaluated using the reverse transcription-polymerase chain reaction. Expression of the NF-E2-related transcription factor 2 (Nrf2) protein was analyzed by Western blotting. Key findings MS significantly increased the expression of HO-1, OPN, BSP, DSPP, and DMP-1 mRNAs in HDPCs. HO-1 silencing and inhibitors of HO-1, p38 MAPK, ERK, phosphoinositide 3-kinase, and nuclear factor-κB (NF-κB) all attenuated MS-stimulated differentiation. The MS-induced nuclear translocation of Nrf2 was suppressed by inhibitors of PI3K and NF-κB. Significance Collectively, these results provide the first evidence that MS stimulates odontoblastic differentiation of HDPCs via modulation of the Nrf2-mediated HO-1 pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.