Abstract
The mechanism by which mechanical strain stimulates bone cell proliferation was investigated and compared with that of estrogen in ROS 17/2.8 cells. Similarity of strain-related responses between ROS cells and osteoblasts was established by demonstrating that ROS cells respond to a short single period of strain in their substrate (1000-3500 microepsilon, 600 cycles, 1 Hz) by a similar strain magnitude-related increase in glucose 6-phosphate dehydrogenase activity as rat osteoblasts and osteocytes in explants in situ. ROS17/2.8 cells also showed similar proliferative responses to strain and 17beta-estradiol, as assessed by [3H]thymidine incorporation and cell counting, as primary cultures of long bone-derived osteoblast-like cells. Strain-related increase in proliferation in ROS cells was accompanied by a 4-fold increase in levels of insulin-like growth factor-II (IGF-II) in conditioned medium. Neither strain nor estrogen had an effect on the conditioned medium levels of IGF-I. Exogenous truncated IGFs tIGF-I and tIGF-II both increased proliferation in a dose-dependent manner. The neutralizing monoclonal antibody (nMAb) to IGF-I blocked proliferation stimulated by tIGF-I but not that due to tIGF-II and vice versa. IGF-I receptor blocking antibody (IGF-IRBAb) blocked the proliferative effect of tIGF-I but not that to tIGF-II. The proliferative effect of estrogen was abolished by IGF-I nMAb and IGF-IRBAb, but these antibodies had no effect on the proliferative response to strain. In contrast IGF-II nMAb abolished the proliferative effect of strain but had no effect on that of estrogen. These data show that ROS17/2.8 cells have similar responses to strain and estrogen qualitatively and quantitatively as rat osteoblasts in situ and rat long bone-derived osteoblast-like cells in primary culture. Estrogen-related proliferation in ROS17/2.8 cells appears to be mediated by IGF-I acting through the IGF-I receptor and does not involve IGF-II. In contrast, strain-related proliferation appears to be mediated by IGF-II and does not involve either IGF-I or the IGF-I receptor.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have