Abstract

We have explored the mechanical strain effects on the magnetotransport in graphene with a 1D electrostatic periodic potential in the presence of a perpendicular magnetic field. We find that, in a strong magnetic field regime, the conductivity exhibits a superposition of the Shubnikov–de Haas and Weiss oscillations in each valley due to the electrical modulation. Especially, the strain removes the valley degeneracy of Landau levels in inversion symmetric Dirac cones. Accordingly, this causes the valley-dependence of the conductivity. These phenomena, absent in a freestanding graphene, are a consequence of the anomalous spectrum of carriers in a fully stained graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.