Abstract

Although abnormalities in calcium regulation have been implicated in the development of most forms of cataract, the mechanisms by which Ca2+ is regulated in the cells of the ocular lens remain poorly defined. Cell-to-cell Ca2+ signaling was investigated in primary cultures of ovine epithelial cells using the Ca(2+)-reporter dye fura-2 and fluorescence microscopy. Mechanical stimulation of a single cell with a micropipette initiated a propagated increase in cytosolic free Ca2+ that spread from the stimulated cell through 2-8 tiers of surrounding cells. During this intercellular Ca2+ wave, cytosolic Ca2+ increased 2- to 12-fold from resting levels of approximately 100 nM. Nanomolar extracellular Ca2+ did not affect the cell-to-cell propagation of the Ca2+ wave, but reduced the magnitude of the cytosolic Ca2+ increases, which was most evident in the mechanically-stimulated cell. Depletion of intracellular Ca2+ stores with thapsigargin eliminated the propagated intercellular Ca2+ wave, but did not prevent the cytosolic Ca2+ increase in the mechanically-stimulated cell, which required extracellular Ca2+ and was attenuated by the addition of the Ca2+ channel blockers Ni2+, Gd3+ and La3+ to the medium. These results are most easily explained by a mechanically-activated channel in the plasma membrane of the stimulated cell. The propagated increase in cytosolic Ca2+ appeared to be communicated to adjacent cells by the passage of an intracellular messenger other than Ca2+ through gap junction channels. However, if the plasma membrane of the mechanically-stimulated cell was ruptured such that there was loss of cytosolic contents, the increase in cytosolic Ca2+ in the surrounding cells was elicited by both a messenger passing through gap junction channels and by a cytosolic factor(s) diffusing through the extracellular medium. These results demonstrate the existence of intercellular Ca2+ signaling in lens cells, which may play a role in regulating cytosolic Ca2+ in the intact lens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call