Abstract
The fabrication of mechanically robust and self-healing polymeric materials remains a formidable challenge. To address the drawbacks, a core strategy is proposed based on the dynamic hard domains formed by hierarchical hydrogen bonds and disulfide bonds. The dynamic hard domains dissipate considerable stress energy during stretching. Meanwhile, the synergistic effect of hierarchical hydrogen bonds and disulfide bonds greatly enhances the relaxation dynamics of the PU network chains, thus accelerating network reorganization. Therefore, this designed strategy effectively solves the inherent drawback between cohesive energy and relaxation dynamics of the PU network. As a result, the PU elastomer has excellent mechanical properties (9.9 MPa and 44.87 MJ/m3) and high self-healing efficiency (96.2%). This approach provides a universal but valid strategy to fabricate high-performance self-healing polymeric materials. Meanwhile, such materials can be extended to emerging fields such as flexible robotics and wearable electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.