Abstract

There are two kinds of excavation methods in underground engineering: the tunnel boring machine (TBM) and the drill-blasting method. A large number of studies have shown that the deformation and failure, the degree of disturbance, the stability and the reinforcement measures of surrounding rock using the TBM and drill-blasting method vary from each other. To accurately master these macroscopic damages, it is necessary to focus on the investigation of the micro-mechanical responses of the surrounding rock. Scanning electron microscopy tests, acoustic emission tests and tunnel acoustic detection tests were carried out to analyze the mechanical response of surrounding rock of tunnels, which were excavated in marble by, respectively, the TBM and the drill-blasting method. The tests results showed that most of the rock fractures cut by TBM is wipe along the crystal, and the failure mechanism is mainly cutting, while most of the rock fractures induced by the TBM coincide with crystal planes, its mechanism is mainly tensile. The stress–strain curves of rocks cut by the TBM method are rather flat around the peak strength, which means a strong resistance to deformation around the peak load. The response of AE for the rock cut by the TBM method appears after larger strains than the response of the rock constructed by the drill-blasting method. This suggests that the resistance to damage is higher under TBM excavation conditions. The relaxation depths of the tunnel excavated by the drill-blasting method are larger than the tunnel excavated by the TBM method. The research can provide more insight into tunnel failure mechanisms and provide a framework for reinforcement measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.