Abstract

Polymer nanocomposite and its mechanical properties are the area of immense interest for material developers in academia and industry. Present study investigates mechanical behavior of novel hexagonal bipyramidal Silver-Poly (vinyl alcohol) nanocomposites (Ag/PVA NCs) thin film fabricated using aqua-mediated in-situ reduction at room temperature. Specimen was characterized through UV-Visible (λmax = 417 nm), PL (λ(em) = 482 nm), XRD (average crystallite size 29.7 nm and preferential growth of thin film along [111] plane), TEM (hexagonal bipyramidal morphology, size ∼26.25 nm), TGA (increased thermal stability), FTIR (peaks at 945, 604 cm-1 confirms coordination of Ag and PVA matrix) and SAED. Depth sensing single-step and multi-step nanoindentation was employed to extract material’s sensitive mechanical property. Hardness (H: 0.352 to 0.192 GPa) and elastic modulus (Er: 8.718 to 6.72GPa) decreased with increasing single-step loads (from 50 μN to 10 mN), which can be attributed to indentation size effect (ISE). Cyclic nanoindentation (p∼5 mN, 23 cycles) was performed to deeply understand material sensitive degree of dislocation-structure interaction for fatigue analysis. The reduction in % elastic recovery was found at higher loads. On account of smooth surface, elastic unloading (stiffness) values linearly (y = 1.3944x + 3.8676 with R2 = 0.9835) increased from cycle 1 to 23 and contact depth increases linearly (y = 0.0329x + 1.5697, R2 = 0.9901) with the number of cycles. Interpretation of p-h profile indicated H and Er decreases with increasing load, along with proceeding cycles and no fracture or breakage/ weakening of NCs / progressive and localized structural damage was observed which evidenced that surface was completely uniform and defect free.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.