Abstract

Samples of the 6063 (Al-1.09Mg2Si) alloy ingot were melted in a crucible furnace and cast in metal and sand moulds, respectively. Standard tensile, hardness, and microstructural test specimens were prepared from cast samples, solution treated at 520∘C, soaked for 6 hrs, and immediately quenched at ambient temperature in a trough containing water to assume a supersaturated structure. The quenched specimens were then thermally aged at 175∘C for 3–7 hrs. Results show that at different ageing time, varied fractions of precipitates and intermetallics evolved in the specimens’ matrices which affect the resulting mechanical properties. The metal mould specimens aged for four hours (MTA-4) exhibited superior ultimate tensile strength of 247.8 MPa; microhardness, 68.5 HV; elongation, 28.2% . It is concluded that the extent of improvement in mechanical properties depends on the fractions, coherence, and distribution of precipitates along with the type of intermetallics developed in the alloy during ageing process.

Highlights

  • Casting is one of the most versatile methods of producing structural aluminium alloy components

  • During the heat treatment of cast aluminium alloys, an advantage is made of the characteristic decrease in solubility at low temperature of magnesium (Mg) and silicon (Si) which are the main alloying elements in Al-Mg-Si alloy

  • Results of the ultimate tensile strength (UTS), ductility, and microhardness responses by test specimens are illustrated in Figures 3–9, while the microstructures induced in the test specimens are shown in Figures 1 and 2

Read more

Summary

Introduction

Casting is one of the most versatile methods of producing structural aluminium alloy components. The rather large preponderance of defects in cast aluminium components often limits their performance and adversely impacts their commercial values. The poor mechanical properties of cast aluminium alloys can be improved through either alloy addition or various forms of heat treatment [1]. During the heat treatment of cast aluminium alloys, an advantage is made of the characteristic decrease in solubility at low temperature of magnesium (Mg) and silicon (Si) which are the main alloying elements in Al-Mg-Si alloy. Keist [2] confirms that the appreciable decrease in concentration of the alloying elements at room temperature is the fundamental phenomenon that provides the basis for increasing substantially the hardness and strength of aluminium alloys through isothermal treatment

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call