Abstract

This review summarizes recently published data on the effects of pregnancy and lactation on bone structure, mechanical properties, and mechano-responsiveness in an effort to elucidate how the balance between the structural and metabolic functions of the skeleton is achieved during these physiological processes. While pregnancy and lactation induce significant changes in bone density and structure to provide calcium for fetal/infant growth, the maternal physiology also comprises several innate compensatory mechanisms that allow for the maintenance of skeletal mechanical integrity. Both clinical and animal studies suggest that pregnancy and lactation lead to adaptations in cortical bone structure to allow for rapid calcium release from the trabecular compartment while maintaining whole bone stiffness and strength. Moreover, extents of lactation-induced bone loss and weaning-induced recovery are highly dependent on a given bone's load-bearing function, resulting in better protection of the mechanical integrity at critical load-bearing sites. The recent discovery of lactation-induced osteocytic perilacunar/canalicular remodeling (PLR) indicates a new means for osteocytes to modulate mineral homeostasis and tissue-level mechanical properties of the maternal skeleton. Furthermore, lactation-induced PLR may also play an important role in maintaining the maternal skeleton's load-bearing capacity by altering osteocyte's microenvironment and modulating the transmission of anabolic mechanical signals to osteocytes. Both clinical and animal studies show that parity and lactation have no adverse, or a positive effect on bone strength later in life. The skeletal effects during pregnancy and lactation reflect an optimized balance between the mechanical and metabolic functions of the skeleton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.