Abstract
Carbon fibre-reinforced polymers (CFRPs) are commonly used in aviation, automotive and renewable energy markets, which are constantly growing. Increasing the production of composite parts leads to increased waste production and a future increase in end-of-life components. To improve the recyclability of CFRPs, new materials that fit in with the idea of a circular economy should be used as a composite matrix. One such material is a commercially available thermoplastic liquid resin, Elium® (Arkema, France). In this work, the authors investigated how the mechanical recycling process affects the properties of thermoplastic-based carbon fibre composites. CFRPs with neat Elium® resin and resin modified with 0.02 wt.% single-walled carbon nanotubes or 0.02 wt.% multi-walled carbon nanotubes were manufactured using the resin infusion process. Afterwards, prepared laminates were mechanically ground, and a new set of composites was manufactured by thermopressing. The microstructure, mechanical, thermal and electrical properties were investigated for both sets of composites. The results showed that mechanical grinding and thermopressing processes lead to a significant increase in the electrical conductivity of composites. Additionally, a sharp decrease in all mechanical properties was observed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have