Abstract

Reliable joint connection is key to designing prefabricated structures. To study the mechanical properties of the vertical joints in the designed prefabricated underground silo steel plate concrete composite wall and verify their reliability, flexural and compressive experiments were conducted using two groups of six full‐scale steel plate concrete composite wall specimens; the mechanical properties between jointed and jointless specimens were compared and analyzed. The experimental results indicate that all specimens are in the elastic stage during the entire loading process; further, they exhibit large stiffness and high bearing capacity without damages. Thus, the designed vertical joints of the steel plate concrete composite wall provide a reliable connection that is safe and applicable. Further, the flexural and compressive properties of jointed and jointless specimens were found to be similar; the newly designed prefabricated underground silo steel plate concrete composite wall could be designed using the “equivalent principle” that the combined wall design calculation with the joint could be equivalent to that without the joint.

Highlights

  • Food security concerns national economy and people’s livelihood as well as national strategic security

  • Prefabrication and steel plate concrete composite structure technologies are adopted to solve key technological difficulties faced by current underground silos and to promote the research and application of underground silos

  • Its mechanical properties determine the selection of the structural calculation method, and this paper focuses on the flexural and compressive mechanical properties of the composite bin wall joints; compared with the control group, the bending and compressive stiffness of the steel plate concrete silo wall with the control group was analyzed, and the reliability and operability of the designed joint were verified

Read more

Summary

Introduction

Food security concerns national economy and people’s livelihood as well as national strategic security. Its mechanical properties determine the selection of the structural calculation method, and this paper focuses on the flexural and compressive mechanical properties of the composite bin wall joints; compared with the control group, the bending and compressive stiffness of the steel plate concrete silo wall with the control group was analyzed, and the reliability and operability of the designed joint were verified. E structural scheme can realize the integrated design and construction of the composite wall and foundation pit support, and reverse construction is adopted to avoid large excavation and solve the difficult problem of the foundation pit support; the dry joint between the steel pile and the prefabricated block of steel plate concrete wall is used to form a whole and shorten the construction period; the steel pile can be used as uplift pile to solve the problem of long construction periods in underground wetting operations and antifloating. Its components are two U bound steel plates, sealing-up steel plate, load-transfer steel

Design and Fabrication of Specimens
Flexural Experiment
Plan 4
C12 C10 C4 C1 C7 C11 C13 Steel
Compressive Experiment
Conclusion e following conclusions can be drawn from this study:
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.