Abstract

The acoustically induced motion of the eardrum of the frog was measured by an incoherent optical technique. When free-field sound stimulation was used, the eardrum vibration had a band-pass characteristic with maximum amplitude at 1-2.5 kHz. However, when the sound was presented in a closed-field acoustic coupler the response was low-pass (cut-off frequency about 2.5 kHz). We demonstrate that the motion is the result of the mechanical properties of the eardrum and the sound pressure acting upon it. The net pressure is due to a combination of sound incident directly on the front of the drum and of sound conducted to the rear via internal (resonant) pathways. The frog ear therefore acts as a pressure-gradient receiver at low frequency and a pressure receiver at high frequency. A model is proposed and analysed in terms of its electrical analogue. This model accounts for both our own experimental observations and those of previous studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.