Abstract

Mechanical and tribological evolution on 4140 steel surfaces coated with hafnium nitride/vanadium nitride [HfN/VN] n multilayer systems deposited in various bilayer periods (Λ) via magnetron sputtering has been exhaustively studied in this work. The coatings were characterized in terms of structural, chemical, morphological, mechanical, and tribological properties by x-ray diffraction (XRD), x-ray photo electron spectroscopy (XPS), atomic force microscopy, scanning and transmission electron microscopy, nanoindentation, pin-on-disk, and scratch tests. Moreover, the failure mode mechanisms were observed via scanning electron microscopy. The XRD results showed preferential growth in the face-centered cubic (111) crystal structure for [HfN/VN] n multilayered coatings. The best enhancement of the mechanical behavior was obtained when the bilayer period (Λ) 15 nm (n = 80), yielding the highest hardness (37 GPa), and elastic modulus (351 GPa). The values for the hardness and elastic modulus were 1.48 and 1.32 times greater than the coating with n = 1, respectively, as well the lowest friction coefficient (~0.15) and the highest critical load (72 N). These results indicated significant enhancements in mechanical, tribological, and adhesion properties, compared to HfN/VN multilayered systems with bilayer period (Λ) of 1200 nm (n = 1). This hardness and toughness enhancement in the multilayered coatings could be attributed to the different mechanisms that produce the layer formation with nanometric thickness due to the number of interfaces acting as obstacles for crack deflection and dissipation of crack energy. Due to the emergent characteristics of the synthesized multilayered, the developed adaptive coating could be considered as higher ordered tool machining systems, capable of sustaining extreme operating conditions for industrial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call