Abstract

Hydrophobic starch esters have potential as tablet matrix formers in controlled drug delivery. The mechanical properties of native starch (SN), starch acetate (SA) and starch propionate (SP) were studied at particle and compact level. Particle microhardness and modulus of elasticity were evaluated by nanoindentation. Force-displacement data of compressed powder were analyzed using Heckel in conjunction with piecewise regression, Kuentz-Leuenberger, Kawakita and Adams models, and yield pressure parameters were derived. Starches were characterized for chemical structure by Raman spectroscopy, crystallinity from powder x-ray diffraction (PXRD) patterns and surface energy from apparent contact angle measurements. A-type starch reflections were absent in the PXRDs of esters indicating greater amorphicity. Consequently, the particle microhardness of starch esters decreased leading to greater deformation during compaction and lower values of yield pressure parameters. These parameters increased with microhardness and ranked the starches in the order: SP < SA < SN. Fitting the experimental data into Hiestand's bonding index equation, a linear correlation (R2 = 0.902) was established between experimental and calculated tablet strength describing results of all starches, when Adams (το') yield pressure was used as the ‘effective compression pressure’ in the above equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call