Abstract
The escalating challenges of Helicobacter pylori-induced gastric complications, driven by rising antibiotic resistance and persistent cancer risks, underscore the demand for innovative therapeutic strategies. This study addresses this urgency through the development of tailored semi-interpenetrating polymer networks (semi-IPN) serving as gastroretentive matrices for amoxicillin (AMOX). They are biodegradable, absorb significant volume of simulated gastric fluid (swelling index > 360 %) and exhibit superporous microstructures, remarkable mucoadhesion, and buoyancy. The investigation includes assessment at pH 1.2 for comparative analysis with prior studies and, notably, at pH 5.0, reflecting the acidic environment in H. pylori-infected stomachs. The semi-IPN demonstrated gel-like structures, maintaining integrity throughout the 24-hour controlled release study, and disintegrating upon completing their intended function. Evaluated in gastroretentive drug delivery system performance, AMOX release at pH 1.2 and pH 5.0 over 24 h (10 %-100 %) employed experimental design methodology, elucidating dominant release mechanisms. Their mucoadhesive, buoyant, three-dimensional scaffold stability, and gastric biodegradability make them ideal for accommodating substantial AMOX quantities. Furthermore, exploring the inclusion of the potassium-competitive acid blocker (P-CAB) vonoprazan (VONO) in AMOX-loaded formulations shows promise for precise and effective drug delivery. This innovative approach has the potential to combat H. pylori infections, thereby preventing the gastric cancer induced by this pathogen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.