Abstract
AbstractBimodal cellular poly(methyl methacrylate) with micro‐ and nano‐sized (300–500 nm) cells with up to 5 wt% of sepiolite nanoparticles and porosity from 50% to 75% are produced by solid‐state foaming. Uniaxial compression tests are performed to measure the effect of sepiolite concentration on the elastic modulus and the yield strength of the solid and cellular nanocomposites. Single edge notch bend tests are conducted to relate the fracture toughness of the solid and cellular nanocomposites to sepiolite concentration. The relative modulus is independent of sepiolite content to within material scatter when considering the complete porosity range. In contrast, a mild enhancement of the relative modulus is observed by the addition of sepiolite particles for the foamed nanocomposites with a porosity close to 50%. The relative compressive strength of the cellular nanocomposites mildly decreases as a function of sepiolite concentration. A strong enhancement of the relative fracture toughness by the addition of sepiolites is observed. The enhancement of the relative fracture toughness and the relative modulus (at 50% porosity) can be attributed to an improved dispersion of the particles due to foaming and the migration of micro‐sized aggregates from the solid phase to the microcellular pores during foaming.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have