Abstract

In some special applications at low temperature, high ductility, deformation, and durability are required for cement-based composites. Magnesium phosphate cement (MPC) possesses unique properties, including fast hardening at a temperature below 0 °C, high early-strength, and durability. This study investigated the influence of the water-to-binder (W/B) ratio, sand-to-binder (S/B) ratio, and various proportions of fly ash (FA) (as a substitute for MPC) on the workability, compressive strength, and tensile properties of high-ductility MPC-based composites (HDMPCC) incorporating polyvinyl acetate (PVA) fibre and cured at low temperatures. The experimental results revealed that the incorporation of up to 30% FA by mass significantly improved the ductility of the HDMPCC. For an S/B ratio of 0.2, strain corresponding to ultimate tensile stress was found to be more than 1.5%, resulting in better strain-hardening behaviour. Moreover, the HDMPCC composite with 30% FA, W/B ratio of 0.14, and S/B ratio of 0.12 exhibited the highest strain corresponding to peak tensile stress at 0 °C. The strain corresponding to peak and ultimate tensile stress ranged from 0.41% to 2.22%. The highest ultimate tensile stress of about 1.28 MPa was observed for HDMPCC specimens cured at 0 °C, –5 °C and –10 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.