Abstract

The use of fluorinated ethylene propylene (FEP) foils as engineering materials for aerospace, solar thermal collector and neutrino detector applications has attracted considerable attention in recent decades. Mechanical properties are indispensable for analyzing corresponding structural behavior to meet the demands of safety and serviceability. In this paper, uniaxial tensile tests taking into account loading speeds, uniaxial tensile cyclic tests in terms of stress amplitude and loading cycles and creep tests considering loading stress and time were carried out to characterize mechanical properties. For uniaxial tensile properties, elastic modulus, yield stress, breaking strength and elongation were analyzed in detail. It is found that these mechanical properties except breaking elongation increased with loading speeds and that mechanical properties obtained in transverse direction were more sensitive than those obtained in machine direction. For cyclic properties, elastic modulus and ratcheting strain tended to be stable after certain cycles, demonstrating that cyclic elastic moduli were more suitable for analyzing structural behavior than those obtained in uniaxial tensile experiments. For creep properties, apparent strain at 6 MPa suggested that special attention was necessary for analyzing structural behavior if maximum stress was larger than 6 MPa. In general, this study could provide useful observations and values for understanding mechanical properties of FEP foils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.