Abstract
The bending modulus (Young’s modulus) of several chemical vapor deposition-grown multiwalled nanotubes (MWNTs) have been measured using a vibrating reed technique. Three different precursors were used to produce MWNTs with differing densities of defects in the tube walls. Individual MWNTs were electrostatically driven in air over a dark-field light microscope and the bending modulus of the nanotubes was determined from the frequency of the first vibrational resonance. A correlation between the defect density and the bending modulus was found which implies that the bending modulus is relatively more sensitive to wall defects than the nanotube diameter.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have